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Abstract. It is critical to predict the motion of surrounding vehicles
for self-driving planning, especially in a socially compliant and flexible
way. However, future prediction is challenging due to the interaction and
uncertainty in driving behaviors. We propose planning-informed trajec-
tory prediction (PiP) to tackle the prediction problem in the multi-agent
setting. Our approach is differentiated from the traditional manner of
prediction, which is only based on historical information and decoupled
with planning. By informing the prediction process with the planning
of the ego vehicle, our method achieves the state-of-the-art performance
of multi-agent forecasting on highway datasets. Moreover, our approach
enables a novel pipeline which couples the prediction and planning, by
conditioning PiP on multiple candidate trajectories of the ego vehicle,
which is highly beneficial for autonomous driving in interactive scenarios.

1 Introduction

Anticipating future trajectories of traffic participants is an essential capability of
autonomous vehicles. Since traffic participants (agents) will affect the behavior
of each other, especially in highly interactive driving scenarios, the prediction
model is required to anticipate the social interaction among agents in the scene
to achieve socially compliant and accurate prediction.

Despite the fact that the interaction among traffic agents is being investi-
gated, far less attention is paid to how the uncontrollable (surrounding) agents
interact with the controlled (ego) agent. Different future plans of the ego agent
will largely affect the future behaviors of all surrounding agents, which leads to
a significant difference in future predictions. Human drivers are accustomed to
imagining what the situation will be if they are going to act in different ways.
For example, they speculate whether the other vehicles will leave space if they
insert aggressively or mildly, respectively. By considering the different future sit-
uations from multiple “what-ifs”, human drivers are adept at negotiating with
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Fig. 1. Comparison between the traditional prediction approach (left) and PiP (right)
under a lane merging scenario. Assume the ego vehicle (red) intends to merge to the
left lane. It is required to predict the trajectories of surrounding vehicles (blue). To
alleviate the uncertainty led by future interaction, PiP incorporates the future plans
(dotted red curve) of ego vehicle in addition to the history tracks (grey curve). While
the traditional prediction result is produced independently with the ego’s future, PiP
produces predictions one-to-one corresponding to the candidate future trajectories by
enabling the novel planning-prediction-coupled pipeline. Therefore, PiP evaluates the
planning safety more precisely and achieves more flexible driving behavior (solid red
curve) compared with the traditional pipeline. (Color figure online)

other traffic participants while flexibly adapting their own driving behaviors.
The key is that human drivers condition the prediction of surrounding vehicles
on their own future intention. In this paper, we want to inform the interaction-
aware prediction using the candidate plans of the controlled vehicle to mimic
this thinking process.

To this end, we propose a novel planning-informed prediction framework
(PiP). Note that PiP does not require the exact future trajectory, which is actu-
ally undetermined during prediction. PiP only conditions the prediction process
on the candidate future trajectories proposed by the trajectory generator, like
“insert aggressively” and “insert mildly” these kinds of “what-ifs”. Accordingly,
the best trajectory could be picked out after evaluating all the candidate plans
by their corresponding predictions in the planning module.

There are two significant benefits of PiP. First, by incorporating the addi-
tional planning information, the interaction among agents can be better cap-
tured, which leads to a considerable improvement in prediction accuracy. Sec-
ond, the planning-informed prediction will provide a highly valuable interface
for the planning module during system integration. Explicitly, instead of evalu-
ating multiple future plans under a fixed prediction result as most autonomous
driving systems do, PiP conditions the prediction process on the ego vehicle’s
future plans, which uncovers how the other vehicles will interact with ego vehicle
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if the ego vehicle executes any specific planning trajectory. The PiP pipeline is
especially suitable for planning in dense and highly interactive traffic (such as
merging into a congested lane), which is hard to be handled using traditional
decoupled prediction and planning pipeline. The comparison between the tradi-
tional pipeline for autonomous driving and PiP is illustrated in Fig. 1.

To effectively achieve planning-informed prediction, we propose two mod-
ules, namely, the planning coupled module and the target fusion module. The
planning coupled module extracts the interaction features with a special chan-
nel for injecting the future planning, while the target fusion module encodes and
decodes the tightly coupled future interaction among agents. PiP is end-to-end
trainable. Our main contributions are listed as follows:

e The planning coupled module is proposed to model the multi-agent interaction
from both the history time domain (history tracking of surrounding agents)
and future time domain (future planning of controlled agent). By introducing
the planning information into social context encoding, the uncertainty from
the multi-modality of driving behavior is alleviated and thus leads to an
improvement in prediction accuracy.

e The target fusion module is presented to capture the interdependence between
target agents further. Since all the future states of targets are linked
up together with the planning of the controlled agent, we apply a fully con-
volutional structure to model their future dependency at different spatial
resolutions. The introduction of the target fusion module leads to further
improvement for multi-agent forecasting.

e Our model outperforms state-of-the-art methods for multi-agent forecast-
ing from tracking data. Moreover, the proposed planning-prediction-coupled
pipeline extends the operational domain of planning by the integration with
prediction, and some qualitative results are demonstrated.

2 Related Work

To accurately forecast the future trajectory of a specific vehicle, we need to dis-
cover the clues from its past observation and corresponding traffic configuration.
In this paper, we focus on the data-driven trajectory prediction methods, which
essentially learn the relationship between future trajectory and past motion
states. Since vehicle behaviors are often inter-related, especially in dense traffic,
it is crucial to consider interaction-aware trajectory prediction for autonomous
driving, namely, in a multi-agent setting. In this section, we provide an overview
of interaction-aware trajectory prediction methods and the common practice
of integrating prediction with planning, which motivates our planning-informed
prediction.

Interaction-aware trajectory prediction: Multi-agent learning and forecast-
ing [9,16,18,28,31] is a challenging problem and Social LSTM [1] is one seminal
work. In [1], the spatial interaction among pedestrians is learned using the pro-
posed social pooling structure based on the hidden states generated by long
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short-term memory (LSTM) network, and [5] improves the social pooling strat-
egy by applying convolutional layers. To better capture the multi-modal nature
of future behaviors, some non-deterministic generative models are adopted based
on generative adversarial networks (GANs) [10,11,25], and variational autoen-
coders (VAEs) [14,17]. Besides learning the interaction among agents, the agent-
scene interaction is also modeled in [2,26,33]. The interaction-aware network
structures are further extended to heterogeneous traffic [3,20] and applied to
autonomous driving scenarios such as[5,6,17].

Trajectory prediction for control and planning: Targeting on the real-
time driving, the popularly used vehicle motion planners [8,21,22,27,30] follow
the workflow: first roll out multiple candidate ego trajectories; then score them
using user-defined functions, in which the future trajectories of other vehicles
predicted based on history tracks are considered; finally, pick out the best tra-
jectory to execute. Note that the prediction result of other vehicles is fixed for
different candidates from the trajectory generator of the ego vehicle. Namely, the
traditional pipeline does not make “what-ifs”, and think the reactions of other
vehicles will be the same even given different ego actions. However, because the
future planning of the ego vehicle in turn affects the behaviors of surround-
ing agents, the “predict-and-plan” workflow may be inadequate, especially in
tightly coupled driving scenarios such as merging [13]. Differentiated from the
traditional decoupled pipeline, PiP can be incorporated into a novel planning-
prediction-coupled pipeline, which extends flexibility in dense traffic.

Planning-informed trajectory prediction: Incorporating planning infor-
mation into prediction was attempted in some works on intelligent vehicles
[29,32]. However, the frameworks were designed for specific scenarios, thereby
constrained by specifically designed features [29] or prototype trajectories [32].
Rhinehart et al. proposed PRECOG [23] to condition prediction on the inten-
tions of the ego vehicle. While even given the same intentions or goals of the
ego vehicle, the specific time profile of how the ego vehicle reaches the goals sig-
nificantly impacts the reaction of surrounding vehicles. It may pose restrictions
to accurate prediction and accordingly motivates us to inform the prediction
process by using the candidate plans from the planning module. Specifically, our
proposed method is capable of providing accurate interaction-aware trajectory
prediction for a large batch of different candidate planned trajectories efficiently,
which facilitates planning in highly interactive environments [4,7].

3 Method

In PiP, the motion of each target vehicle is predicted by considering not only its
own state and the other agents’ states in the history time domain, but also the
ego vehicle’s planned trajectory. In this section, we first formulate the problem in
Sect. 3.1, and describe the details of PiP in the following structure: the planning-
coupled module which incorporates the ego vehicle’s planned trajectory in the
social tensors of neighboring vehicles’ past motions (Sect. 3.2), the method of
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agent-centric target fusion (Sect. 3.3) and the maneuver-based decoding method
for generating the probabilistic distribution of the location displacement between
future frames (Sect. 3.4). Some implementation details are provided in Sect. 3.5.

3.1 Problem Formulation

Consider the driving scenario for an autonomous vehicle. The ego vehicle is
commanded by the planning module, and the perception module senses the
neighboring vehicles within a certain range. We formulate the trajectory pre-
diction problem in the multi-agent setting as estimating the future states of a
set of target vehicles around the ego vehicle vq4, conditioning on the tracking
history of all surrounding vehicles and the planned future of the controllable
ego vehicle. The objective is to learn the posterior distribution P(Y|X,Z) of
multiple targets’ future trajectories Y = {Y;|v; € Vior}, where Vi, is the set
of predicted targets selected within an ego-vehicle-centric area Aq,.. The con-
ditional items contain the future planning of ego vehicle Z and the past tra-
jectories X = {X;|v; € V'}, where V denotes the set of all vehicles involved
around the ego vehicle, and (vego U Viar) € V as the ego vehicle is not
required to be predicted. At any time ¢, the history trajectory and future tra-

jectory of an agent i are denoted as X; = {xffT"bSH,sr:ffTC’bﬁQn-’xﬁ} and

Y, = yf+1,yf+2...,yf+Tp”d}, where the elements of x;,7; € R? represent way-
point coordinates in the past and future, respectively, while Tpps and Tpyeq refer
to the number of frames for observation and prediction. Note that the planned
trajectory Z = Yego = {yé;ol g s Yego " }is also used as a conditional item,
since it’s generated from ego vehicle’s trajectory planner and thus can be acces-
sible during prediction. Moreover, the introduction of Z enables the planning-

prediction-coupled pipeline as shown in Fig. 1.

3.2 Planning Coupled Module

In the planning coupled module, each predicted agent is processed in its own
centric area Appy, in which the ego vehicle vego, the target vehicle veent € Viar
and the other neighboring vehicles V,,;-s C V located within A,;, are included.
There involve three encoding streams: the dynamic property of the target itself,
the social interaction with the target’s neighboring vehicles, and the spatial
dependency with ego vehicle’s future planning. Consequently, a target encod-
ing 7 is generated by embedding these encodings together. In practice, we use
relative trajectories in an agent-centric manner for capturing interdependencies
between the centric agent and surrounding agents.

Trajectory Encoding: All trajectories contained in the planning coupled module
could be classified into two types: observable and controllable. The history trajec-
tories of traffic participants could be observed, and the planned trajectory to com-
mand the ego vehicle could be controlled. Before extracting the spatially interac-
tive relationship between traffic agents, all trajectories are encoded independently
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Fig. 2. The overview of PiP architecture: PiP consists of three key modules, including
planning coupled module, target fusion module, and maneuver-based decoding module.
Each predicted target is firstly encoded in the planning coupled module by aggregat-
ing all information within the target-centric area (blue square). A target tensor is then
set up within the ego-vehicle-centric area (red square) by placing the target encodings
into the spatial gird based on their locations. Afterward, the target tensors are passed
through the following target fusion module to learn the interdependency between tar-
gets, and eventually, a fused target tensor is generated. Finally, the prediction of each
target is decoded from the corresponding fused target encoding in the maneuver-based
decoding module. The target vehicle marked with an ellipse is exemplified for planning
coupled encoding and multi-modal trajectories decoding. (Color figure online)

to learn the temporal properties in their sequential locations. To better accomplish
this work, each trajectory is preprocessed by converting its locations into relative
coordinates with respect to the target vehicle and then fed into a temporal convolu-
tional layer to obtain a motion embedding. After that, the Long Short-Term Mem-
ory (LSTM) networks are employed to encode the motion property for trajectories,
and the hidden state h(-) therein is regarded as the motion encoding for the corre-
sponding trajectory. Here, the LSTMs with different parameters are adopted for
planned trajectory Y4, and history trajectories including Xcg0, Xcent and Xppr,
as they belong to the different time domains.

Planning and Observation Fusion: The use of LSTM encoder captures the
temporal structure from the trajectory sequence, while it fails to handle the
spatial interaction relationship with other agents in a scene. The social pooling
strategy, proposed in [1], addresses this issue by pooling LSTM states of spa-
tially proximal sequences in a target-centric grid named as “social tensor”. The
“convolutional social pooling” in [5] improves the strategy further by applying
convolutional and max-pooling layers over the social tensor. Both of the meth-
ods are proposed for learning the spatial relationship among trajectories that
takes place in the history period. In our proposed framework, we adopt the con-
volutional social pooling structure for modeling spatial interaction. In addition
to interdependencies between target and neighbors in the past time, the spatial
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information of ego vehicle’s planning in the future time is counted in the plan-
ning coupled module as an improvement. Accordingly, three encoding branches
stemming from LSTM hidden states of all trajectories are included, as illustrated
in Fig. 2. The lower branch encodes the dynamics property of the target vehicle
by feeding its motion encoding h(X ent) to a fully connected layer. The spatial
relationship between the target and its surrounding agents is captured in the
upper branches by building a grid centered at the location of the target vehicle.
Since the planned future trajectory and observed history trajectory belong to
different time domain, the history information of h(X,s,) and h(X4,) are placed
into a target-centric spatial grid termed as observation tensor with respect to
the corresponding locations at current time ¢, while the motion encoding of the
planned trajectory h(Yeg,) is placed similarly in another spatial grid to form the
planning tensor. It should be noted that the planning sequence is encoded in a
reversed order because the planning of the near future is more reliable, and thus
it should weight more in the encoding.

After that, both of the observation and planning tensors pass through convo-
lutional layers and pooling layers in parallel and then are concatenated together
before fed to the last max-pooling layer. Merging the information from the plan-
ning of ego vehicle and observation of surrounding vehicles, the resulting encod-
ing S covers the social context for both the past and future time domain. Finally,
the merged social encoding S concatenates with the target’s dynamics encoding
D to form a target encoding 7 that aggregates all the information accessible
within the target-centric grid.

3.3 Target Fusion Module

In [1,5], the future states of each target is directly decoded from the agent-
centric encoding result that aggregates history information. In this way, each
trajectory is generated independently from the corresponding target encoding.
However, the future states of targets are highly correlated, which indicates that
the decoding process for a certain target also depends on the encoding of other
targets. Therefore, we further fuse the encoding among different targets in the
scene and decode the final trajectory from the fused encoding, which better
captures the dependencies of future states of different targets in the same scene.

For jointly predicting the vehicles within the target area centered on the ego
vehicle’s location, each target vehicle v; € Vi, represented by its encoding 7;
is placed into an ego-vehicle-centric grid {7;|v; € Vi4,} based on their locations
at the last time step of history trajectories. Inspired by some popular CNN
architectures for segmentation [19,24] that produce correspondingly-sized output
with hierarchical inference, we adopt the fully convolutional network (FCN) to
learn the context of target tensor. The target tensor is fed into a symmetric
FCN structure for capturing the spatial dependencies between target agents
at different grid resolutions, where the skip-connected layers are combined by
element-wise sum. The fused target tensor produced by this module retains its
spatial structure the same as before fusion, from which the fused target encoding
7,7 of each target could be sliced out according to its grid location.
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3.4 Maneuver Based Decoding

To address the inherent multi-modality nature of the driving behaviors, the
maneuver based decoder built upon [5] is applied to predict the future trajec-
tory for predefined maneuver classes M = {my|k = 1,2, ...,6} together with the
probability of each maneuver P(my). The maneuvers are classified by lateral
behaviors (including lane-keeping, left and right lane changes) and longitudinal
behaviors (including normal driving and braking). Thereupon, the fused target
encoding 7, of target vehicle v; € Vi, is first fed into a pair of fully connected
layers that followed by soft-max layers to get the lateral and longitudinal behav-
ior probability respectively, and thus their multiplication produces the probabil-
ity for each maneuver P(my|Z,X). The trajectory under each maneuver class
is generated by concatenating the fused target encoding with one-hot vectors
of lateral behavior and longitudinal behavior together, followed by passing the
resulted feature vector through an LSTM decoder. Instead of directly generat-
ing absolute future locations, our LSTM decoder operates in a residual learn-
ing manner that outputs displacement between predicted locations. The output
vector contains the displacement 5yt+T € R? between neighboring predicted
locations, the standard deviation vector Ut+T € R? and correlation coefficient
prrT € R of predicted location yt+T at the future time step T' € {1,2, ..., Tprea}-
The predicted location could be accordingly represented by a bivariate Gaussian
distribution

G~ N 0T T, (1)

where the mean vector is given by summing up all displacements along the future
time steps T with the location at the last time step t of history trajectory

t+T — l‘ + Z5yt+T (2)

For brevity, the Gaussian parameters for all future time steps of target v; is
written as ©@;. Finally, the posterior probability of all target vehicles’ future
trajectories could be estimated from

| M|
Vi €EVigr k=1

3.5 Implementation Details

Our model is trained by minimizing the negative log likelihood of future trajec-
tories under the true maneuver class my.4e Of all the target vehicles

— Y log (P, (Yilmirue: X, I) P(myrue| X, 1)) (4)
v, €Viar

Each data instance contains a vehicle specified as the ego. The predicted
targets are the vehicles located within the ego-vehicle-centric area Ay, with the
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size of 60.96 x 10.67 meters (200 x 35 feet), discretized as 25 x 5 spatial grid. The
target-centric area A, of each predicted vehicle is defined the same as A;q;-.

For the planning input Z of the ego vehicle, its actual trajectory within the
prediction horizon is directly used in training. While in evaluation and testing, 7
is fitted from its downsampled actual trajectory. It is handled in this way because
we intend to restrict the prediction from accessing the complete information
of planning trajectory, instead only a limited number of waypoints could be
accessed. Furthermore, the ground-truth trajectories result from many planning
cycles, while in practice, prediction can only be based on the current planning
cycle. So the planning input is represented by a fitted quintic spline, which
is a typically used representation for vehicle trajectory. This feature makes our
planning-informed method easy to deploy in a real autonomous system. Although
the fitted planning input cannot perfectly fit the actual future trajectory, it could
be examined if our method can generalize well in practical use.

4 Experiments

In this section, we evaluate our method on two publicly available vehicle trajec-
tory datasets, NGSI [12] and HighD [15]. Firstly, we compare the performance of
our method against the existing state-of-the-art works quantitatively using the
metrics of root mean squared error (RMSE) and negative log-likelihood (NLL).
Next, as our method could anticipate different future configurations by perform-
ing different plans under the same historical situation, we evaluate PiP from
more simulated future situations. Regarding the rationality and variety in gen-
erating feasible vehicle trajectories, we employ a model-based vehicle planner
MPDM [4] to generate diverse vehicle trajectories with different lateral and lon-
gitudinal behaviors. In Sect. 4.4, a user study is conducted by comparing our
generated results with the real situations to verify the rationalization of predicted
outcomes, and more results are provided in Sect. 4.5 for qualitative analysis.

4.1 Datasets

We split all the trajectories contained in NGSIM and HighD separately, in which
70% are used for training with 20% and 10% for testing and evaluation. Each
vehicle’s trajectory is split into 8s segments composed of 3s of past and 5s of
future positions 5Hz. The 5s future of ego vehicle used as planning input is
further downsampled 1 Hz in testing and evaluation. The objective is to predict
all surrounding target vehicles’ future trajectories over 5s prediction horizon.

NGSIM: NGSIM [12] is a real-world highway dataset which is commonly used
in the trajectory prediction task. All vehicle trajectories over a 45-minute time
span are captured 10 Hz, with each 15-minute segment under mild, moderate,
and congested traffic conditions, respectively.

HighD: HighD [15] is a vehicle trajectories dataset released in 2018. The data
is recorded from six different locations on Germany highways from the aerial
perspective using a drone. It is composed of 60 recordings over areas of 400 ~
420 m span, with more than 110,000 vehicles are contained.
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4.2 Baseline Methods

We compare PiP with the following listed deterministic models and stochastic
models. We also ablate the planning coupled module and target fusion mod-
ule in PiP-noPlan and PiP-noFusion respectively, to study their effectiveness in
improving prediction accuracy upon the baselines.

S-LSTM: Social LSTM [1] uses a fully connected layer for social pooling and
produces a uni-modal distribution of future locations.

CS-LSTM: Convolutional Social LSTM [5] uses convolutional layers with social
pooling and outputs a maneuver-based multi-modal prediction.

S-GAN: Social GAN [11] trains GAN based framework using the adversarial
loss to generate diverse trajectories for multi-agent in a spatial-centric manner.

MATF: MATF-GAN [33] models spatial interaction of agents and scene context
by convolutional fusion and uses GAN to produce stochastic predictions.

4.3 Quantitative Evaluation

Among all the above methods, S-GAN and MATF are stochastic models.! We
report their RMSE by the best result among 3 samples (i.e., minRMSE). The
others are all deterministic models that generate Gaussian distributions for all
predicted locations along the trajectory, in which the means of Gaussian parame-
ters are used as the predicted locations when calculating the RMSE for each time
step ¢ within the 5s prediction horizon: RMSE(t) = \/le‘ v, i — i 2.
For multi-modal distribution output by CS-LSTM, PiP and its variants, RMSE
is evaluated using the predicted trajectory with the maximal maneuver proba-
bility P(my). While RMSE is a concrete metric to measure prediction accuracy,
it is limited to some extent since it tends to average all the prediction results
and may fail to reflect the accuracy for distinct maneuvers. To overcome its
limitation in evaluating multi-modal prediction, we adopt the same way from
prior work [5] that additionally reports the negative log-likelihood (NLL) of the
true trajectories under the prediction results represented by either uni-modal or
multi-modal distributions.

The results of quantitative results are reported in Table 1. Our method signif-
icantly outperforms the deterministic models (S-LSTM and CS-LSTM) in both
RMSE and NLL metrics on both datasets. Although sampling more trajectories
and choosing the minimal error among all samples would undoubtedly lead to a
lower RMSE for stochastic models (S-GAN and MATF), our deterministic model
still achieves lower RMSE than stochastic models for sampling three times. The
reason for not setting a larger sampling number for the stochastic models is that
sampling too many times for prediction may not work well with planning and
decision making since the probability of each sample is actually unknown.

! No NLL results of S-GAN and MATF, as they sample trajectories without generating
probability. No RMSE result of MATF on the HighD dataset is reported in [33].
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Table 1. Quantitative results on the NGSIM and HighD datasets are reported by
RMSE and NLL metrics over 5s prediction horizon. The best results are marked by
bold numbers. Note that for the stochastic methods (S-GAN and MATF), the minimal
error from sampling three times reports their RMSE

Metric Dataset | Time | S-LSTM [1] | CS-LSTM [5] | S-GAN [11] | MATF [33] | PiP-noPlan | PiP-noFusion | PiP
RMSE (m) | NGSIM | 1s 0.60 0.58 0.57 0.66 0.55 0.55 0.55
2s 1.28 1.26 1.32 1.34 1.20 1.19 1.18

3s 2.09 2.07 2.22 2.08 2.00 1.95 1.94

4s 3.10 3.09 3.26 2.97 3.01 2.90 2.88

5s 4.37 4.37 4.40 4.13 4.27 4.07 4.04

HighD | 1s 0.19 0.19 0.30 - 0.18 0.17 0.17

2s 0.57 0.57 0.78 - 0.53 0.53 0.52

3s 1.18 1.16 1.46 - 1.09 1.05 1.05

4s 2.00 1.96 2.34 - 1.86 1.76 1.76

5s 3.02 2.96 3.41 - 2.81 2.63 2.63

Metric Dataset | Time | S-LSTM CS-LSTM S-GAN MATF PiP-noPlan | PiP-noFusion | PiP
NLL (nats) | NGSIM | 1s 2.38 1.91 - - 1.68 1.71 1.72
2s 3.86 3.44 - - 3.29 3.29 3.30

3s 4.69 4.31 - - 4.20 4.17 4.17

4s 5.33 4.94 - - 4.87 4.81 4.80

5s 5.89 5.48 - - 5.42 5.33 5.32

HighD | 1s 0.42 0.37 - - 0.20 0.20 0.14

2s 2.58 2.43 - - 2.28 2.28 2.24

3s 3.93 3.65 - - 3.53 3.53 3.48

4s 4.87 4.51 - - 4.39 4.37 4.33

5s 5.57 5.17 - - 5.05 5.01 4.99

The consistent improvements on NLL and RMSE metrics confirm that, by
introducing the planning of ego vehicle into the prediction model and captur-
ing the correlations between prediction targets, PiP is superior to all baselines
in prediction accuracy. Additionally, the results of ablated models show that
both the target fusion module and the planning coupled module lead to obvi-
ous improvement upon the CS-LSTM. By comparison, the inclusion of planning
trajectory is more effective in improving the multi-agent forecasting accuracy.

4.4 User Study

To investigate if our prediction model generalizes to various future plans (differ-
ent maneuver classes and aggressiveness) under different traffic configurations,
we have also simulated diverse future scenarios by performing different planned
trajectories for the ego vehicle. Accordingly, we conduct the user study that com-
pares real and simulated traffic situations, as shown in the upper part of Fig. 3.
Each pair of videos are derived from a segment of 8s traffic sequence recorded
in the datasets. One video displays the complete recording of the real tracking
data, while the other video shares the same 3s history sequence, and contains a
different sequence in the last 5s which is composed by the predicted trajectories
of targets (blue) under a different plan performed by ego vehicle (red). The other
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Fig. 3. Upper: user study example of comparing the real and simulated situations.
Each comparison is visualized as video pair for users to choose the situation that vio-
lates their intuition. Lower: two example cases predicted by CS-LSTM and PiP. The
ground truth (blue), planning (red) and predicted trajectories (green) are visualized by
sets of locations with 0.2s time step. As both methods output maneuver-based multi-
modal distributions, only those trajectories with maneuver probability larger than 10%
are shown for each target. The green circle denotes the mean value of distribution on
each time step, and its radius is proportional to the maneuver probability of the corre-
sponding trajectory. The green shadow area represents the variance of the distribution.
(Color figure online)

agents (no color) outside the predictive range are hidden in the last 5s. Note that
the same coloring scheme is used in the following experiments.

We display 20 pairs of videos with randomized order and ask participants to
select the one in which the target vesicles’ behavior looks unreasonable or against
common sense. Totally 25 people participated in the user study, and our simulated
results were selected as the unreasonable one with a rate of 52.2% (261/500), a
bit higher than 50%. One reason is that the ego vehicle’s planned trajectory in
the simulated results is generated offline, but its real trajectory recorded in the
datasets is resulted from replanning adaptively from time to time. Then it could
be a clue for users to select the actual situation as the better one.

Nevertheless, our model still achieves a 47.8% rate of being selected as reason-
able. It could also be noted in the upper part of Fig. 3, we generate an agile lane
merging trajectory for the ego car, and the predicted outcome shows that the fol-
lowing vehicle reacts with deceleration while the leading vehicles maintain speed.
Both of the forecastings make sense in real traffic, which indicates that our pro-
posed method could be generalized to different plans.

4.5 Qualitative Analysis

In the following, we further investigate how the prediction is improved as well
as explore how PiP enables the planning-prediction-coupled pipeline.
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Fig. 4. Prediction results of performing diverse planned trajectories by ego vehicle: the
history trajectories (grey) are from a traffic scene in NGSIM, and the future trajectories
are visualized by gradient color varying over time. The target vehicle that collides with
ego vehicle is marked with a star symbol, and the collision point is annotated by a
cross symbol. (Color figure online)

Baseline Comparison: Since our method employs the same maneuver-based
decoding as in CS-LSTM [5], the predictive distribution under the same traffic
scenes is compared in the lower part of Fig. 3. In the left example, we notice that
CS-LSTM outputs similar maneuver probability of keeping the lane and turning
right for the left-rear target. At the same time, our method is more confident
to target’s actual maneuver of turning right. It is because that ego vehicle is
planned to go straight under certain velocity, thereby leaving enough space for
the target to merge to its right lane. By the same token, our method precisely
predicts the right-rear target will keep lane but not turn left in the right example.
At that moment, the ego vehicle intends to merge to the right lane gradually
in a moderate manner, which blocks the way for the right-rear target to turn
left in the near future. Both examples demonstrate that the planning-informed
approach leads the prediction to be more accurate.

Active Planning: With PiP, it is feasible to explore how to plan in different
traffic situations actively. In the following, we illustrate some challenging scenar-
ios with history states acquired from datasets, and PiP produces diverse future
states under different plans generated by the ego vehicle.

Figure 4 (a,b) shows prediction results when performing a moderate and
aggressive lane changing in dense traffic. It could be noticed that the aggressive
behavior in Fig. 4 (b) is risky as it is very close to the preceding vehicle after
merging. Notably, when it merges aggressively a bit faster, as shown in Fig. 4
(c), a collision is forecasted between the controlled vehicle and the target with a
star mark. The ability of forecasting collision further verifies the generalization
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Fig. 5. Prediction results of performing diverse planned trajectories by ego vehicle:
the history trajectories are from a highway scene in HighD. All the annotations are
same with Fig. 4. The predicted future is shown with a collision in (a, b) and safe lane
changing in (c,d). (Color figure online)

of our network as no collision occurred in the traffic recordings where the PiP
model is trained. Figure 5 shows another example from the HighD dataset in
which the vehicles go much faster than that in the NGSIM dataset. In this case,
turning right is challenging. In Fig. 5 (a) the ego vehicle is planned to turn right
and follow the right-front target. A prompt deceleration may cause the rear
vehicle to fail to respond and results in a rear-end collision. PiP also anticipates
in Fig. 5 (b) that a collision will occur if the ego vehicle plans to turn right and
overtakes the right-font target. Nevertheless, it is still possible to find a proper
way of merging to the right lane, as shown in Fig. 5 (¢). Additionally, we also
show a result of changing to the left lane in Fig. 5 (d), which is relatively easier
as there exists larger space on the left for lane changing.

5 Conclusion

In this work, we present PiP for predicting future trajectories in a planning-
informed approach. Leveraging on the fact that all traffic agents are tightly cou-
pled throughout the time domain, the future prediction on surrounding agents is
informed by incorporating history tracks with future planning of the controllable
agent. PiP outperforms the state-of-the-art works for multi-agent forecasting on
highway datasets. Furthermore, PiP enables a novel planning-prediction-coupled
pipeline that produces future predictions one-to-one corresponding to candidate
trajectories, and we demonstrate that it could act as a highly usable interface
for planning in dense or fast-moving traffic. In the future, we plan to extend our
approach to work under imperfect tracking or detection information, which is
common in the perception module. Further, the future prediction and trajectory
generation could be integrated into a motion planner that learns to generate
optimal planning under interactive scenarios.
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