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Fig. 1. Illustration of our proposed PRIME framework. PRIME has two stages for trajectory prediction in traffic scenarios: the model-based generator
(left) which samples the target’s feasible future trajectories T by taking its real-time state s0tar and the map M, while explicitly imposing kinematical and
environmental constraints to guarantee trajectory feasibility; the learning-based evaluator (right) which receives the feasible trajectories T and all observed
tracks S to model the implicit interactions among all traffic agents, and selects a final set of feasible trajectories Ttar ⊂ T as the prediction result.

Abstract—Predicting the future trajectories of on-road vehicles
is critical for autonomous driving. In this paper, we introduce
a novel prediction framework called PRIME, which stands for
Prediction with Model-based Planning. Unlike recent prediction
works that utilize neural networks to model scene context
and produce unconstrained trajectories, PRIME is designed to
generate accurate and feasibility-guaranteed future trajectory
predictions, which guarantees the trajectory feasibility by exploit-
ing a model-based generator to produce future trajectories under
explicit constraints and enables accurate multimodal prediction
by using a learning-based evaluator to select future trajectories.
We conduct experiments on the large-scale Argoverse Motion
Forecasting Benchmark. Our PRIME outperforms state-of-the-
art methods in prediction accuracy, feasibility, and robustness
under imperfect tracking. Furthermore, we achieve the 1st place
on the Argoervese Leaderboard. 1

I. INTRODUCTION

Predicting the future states of dynamic agents is critical for
robot planning in an interactive environment. In the architec-
ture of autonomous driving, prediction serves as the bridging
module that reasons future states based on the perceived infor-
mation from upstream detection and tracking and provides the
predicted future states to facilitate the downstream planning.
Therefore, we are particularly interested in making accurate
and reasonable trajectory predictions for on-road vehicles,
which is vital for planning safe, efficient, and comfortable
motion for self-driving vehicles (SDVs).

1Our approach ranks the 1st on the Argoervese Motion Forecasting Leader-
board by 2021-03-01. The snapshot is shown in the appendix (Fig. 7).

Trajectory prediction is challenging because the self-driving
system has various requirements for this module. The widely
known difficulty lies in modeling multi-agent interactions
in an on-road environment and inferring multimodal future
states. Traditional methods [16, 18, 44, 21] produce motion
forecasting by handcrafted rules or models with embedded
physical and environmental features, which are insufficient for
modeling interactive agents in complex scenes. In recent years,
learning-based approaches [1, 20, 2] advance the frontier of
this area. With deep neural networks to fuse scene context
information and generate future trajectories, learning-based
frameworks significantly promote the prediction accuracy and
dominate the recent motion forecasting competitions for au-
tonomous driving [3, 7].

Despite achieving steady improvement in accuracy, much
less attention has been paid to the feasibility and robustness in
prediction. Indeed, most traffic participants operate under their
inherent kinematic constraints (e.g., non-holonomic motion
constraints for vehicles) while in compliance with the road
structure (e.g., lane connectivity, static obstacles) and seman-
tic information (e.g., traffic lights, speed limits). All these
kinematic and environmental constraints explicitly regularize
the trajectory space. However, most existing future prediction
methods model traffic agents as points and produce sequences
of future positions without constraints. Such constraint-free
predictions may be incompliant with kinematic or environ-
mental characteristics, which gives rise to massive uncertainty
in the predicted future states. Consequently, the downstream
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planning module would inevitably undergo some extra bur-
dens, and even the ”freezing robot problem” [37]. Further-
more, recent works typically generate trajectory predictions
by network regression, which has high dependences on long-
term tracking results. Nevertheless, for some dense driving
scenarios, where the target would be momently occluded or
suddenly appears within the sensing range, tracking results
are discontinuous or not accumulated enough. The prediction
accuracy would degrade under such imperfect tracking cases.

Toward overcoming these challenges, we propose a novel
prediction architecture called PRIME. The critical idea is to
exploit a model-based motion planner as the prediction gener-
ator to sample feasible future trajectories for targets, together
with a deep neural network as the prediction evaluator to
select future trajectories by scoring. The novel architecture
contributes to accurate, feasible, and robust trajectory predic-
tions. Our contributions are summarized as follows:
• We propose PRIME, a novel framework for vehicle

trajectory prediction. PRIME guarantees the feasibility
of trajectory predictions by exploiting a model-based
generator to produce future trajectories under explicit
constraints, while it enables accurate multimodal predic-
tion by using a learning-based evaluator to select future
trajectories.

• Our PRIME framework ranks the 1st on the Argoverse
Motion Forecasting Leaderboard, reaching the best per-
formance on Miss Rate (MR6, official ranking metric)
and Probabilistic Final Displacement Error (p-minFDE6).
Notably, to the best of our knowledge, PRIME is the
only method that uses an interpretable motion planner
to produce trajectory prediction among the top-ranked
entries.

• Our PRIME outperforms the state-of-the-art methods
in trajectory feasibility and prediction robustness under
imperfect tracking in addition to the prediction accuracy.
These attributes facilitate more efficient downstream plan-
ning for self-driving vehicles.

II. RELATED WORK

This section first reviews the typical motion prediction and
planning methods in self-driving, focusing on their connection
and difference. We then cover the recent advances in modeling
agent-map interactions and generating multimodal predictions,
which are fundamental issues in the prediction task.
Prediction and Planning are closely intertwined in the
pipeline of autonomous driving [12, 39, 19, 34]. Planning
is predominantly studied to generate kinematically feasible
and environmentally compatible trajectories and, with con-
sidering more aspects such as comfort, safety, energy con-
sumption, and progress towards the goal, select the best plan
for the self-driving vehicle (ego agent). Prediction facilitates
the best plan selection by inferring future trajectories of
the surrounding vehicles (target agents) from the perceived
historical information. Their different primary focuses make
the corresponding mainstream frameworks diverge. Model-
based approaches [27, 40, 24, 13] are preferred in planning

due to their interpretability and reliability in computing safe
trajectories under explicit constraints. Learning-based methods
[25], in contrast, prevail in prediction by utilizing the power
of data-driven in modeling implicit multi-agent interactions.

Some learning-based prediction methods incorporate the
goal-directed idea from planning to infer the possible goals
and then produce goal-conditioned trajectories using inverse
reinforcement learning (IRL) [43, 29] or deep neural networks
[23, 41]. Moreover, several recent works introduce novel
planning-prediction-coupled frameworks to perform condi-
tional prediction with respect to ego’s intentions [31] and
motion plans [35, 33]. With much emphasis on improving
the point-level prediction accuracy, all these learning-based
works rely on neural networks to process complex traffic en-
vironments, but cannot ensure physical constraints are indeed
imposed on trajectory generation. With the exception of DKM
[9], it embeds the two-axle vehicle kinematics [28] in the
output layer to ensure kinematically feasible trajectories, yet
still no guarantee on environmental feasibility.

Inspired by the popular sampling-based paradigm in vehicle
motion planning [39, 40], which samples abundant trajectories
subject to explicit model constraints and then, based on pre-
defined scoring functions, chooses the best trajectory for exe-
cution. We employ a model-based motion planner in trajectory
generation to provide trajectory sets based on the real-time
state of prediction targets and road environments. Afterward,
a learning-based network’s role is simplified to rank the set
of feasible trajectories with modeling agent-map interactions.
In this way, our novel two-stage architecture makes the most
of model-based planning and learning-based prediction, which
fulfills environmental and kinematic constraints while handling
complex interactions.
Modelling agent-map interactions is critical for prediction.
The classical work from Benz [44] anticipates driving behavior
with map constraints. It first associates each target with cor-
responding reachable lanes and then directly generates lane-
following trajectory predictions based on the target’s state and
map topology. However, it fails in capturing the multi-agent
interaction that broadly exists in interactive driving scenarios.
To better capture information from road environment and dy-
namic agents, many learning-based works [8, 11, 26] convert
raw input data to rasterization images by rendering traffic
entities with different colors or intensities, which could be
encoded with Convolutional Neural Networks. More recent
works [14, 22, 41] propose to use vectorized scene context as
nodes to construct a graph, followed by processing with Graph
Neural Networks. The vectorized representation exploits High
Definition (HD) maps more explicitly and brings improve-
ment in prediction accuracy. Different from these approaches,
we address the agent-map modeling through a hierarchical
structure that incorporates the lane-association ideas from [44]
while extends to learn global scene context. To be specific, our
prediction generator acts locally in a planning manner to gen-
erate trajectory sets for the target vehicle on reachable paths.
Next, our prediction evaluator gets a global understanding of
the scene context by learning from aggregating over all lane-
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Fig. 2. PRIME framework overview. The model-based generator searches reachable paths P through the map and samples a set of feasible future trajectories
T . The learning-based evaluator first encodes scene context given by (P, T ,S), including l paths in P , (m+1) history tracks in S and n future trajectories in
T . The implicit agent-map interactions are learned in the subsequent attention modules: P2T and P2F propagate the spatial information of each reference path
Pi into history tracks and corresponding future trajectories, and A2A takes track tensors from P2T to capture the multi-agent interactions. As the path-based
Frenét coordinate is used in our dual spatial representation, P2T, P2F, and A2A operate for each path, while F2F fuses all the future trajectories processed
by P2F to obtain a global understanding for the reachable space. Subsequently, each feasible trajectory Ti,j could query its track tensor Xi(star) from P2T,
interaction tensor Yi(star) from A2A and future tensor Z(Ti,j) from F2F, and it is scored by feeding the concatenation of these tensors to fully-connected
layers. Finally, the evaluator ranks all feasible future trajectories in T by scoring and outputs a final set of K predicted trajectories.

conditioned trajectories and map features.

Generating multimodal trajectories is another core chal-
lenge for prediction. To account for the intrinsic multimodal
distributions, a line of works are built upon stochastic models
such as conditional variational autoencoders (CVAEs) [20, 30,
17, 36, 5] or generative adversarial networks (GANs) [15, 32,
42] to draw trajectory samples. Although their performance is
competitive, the drawback of sampling uncontrollable latent
variables at inference time prohibits them from being deployed
on safety-critical driving scenarios. Deterministic approaches
are mostly based on multi-mode trajectory regression [10, 4, 8,
22]. To alleviate mode collapse in prediction learning, recently
proposed frameworks decompose the task into classification
over anchor trajectories [6] or goal-conditioned trajectories
[41], followed by trajectory offset regression. However, there
is no feasibility guarantee for the trajectory regressed from
neural networks. CoverNet [26] attempts to meet specific
physical requirements by formulating multimodal prediction
as pure classification over a pre-constructed trajectory set,
but its prediction may violate the real-time states of agents
or traffic environment. By leveraging model-based planning
as the prediction generator, our approach shows superiority
in the following crucial aspects. Firstly, trajectory feasibility
could be guaranteed by imposing environmental and kinematic
constraints from real-time situations. Secondly, our model
provides multimodal distribution by generating trajectory sets
with sufficient coverage over reachable paths. Thirdly, rather
than outputs discrete future locations as most methods do, our

model produces high-fidelity trajectories with continuous in-
formation, including location, heading, velocity, acceleration,
etc. Lastly, it could generate trajectories given the target’s
current state, which mitigates the high dependence on long-
term tracking results.

III. OVERVIEW

Problem formulation. We assume that the self-driving vehicle
is equipped with detection and tracking modules that provide
observed state S for on-road agents A, and has access to the
HD map informationM. Let sti denote the state of agent ai ∈
A at frame t, including position, heading, velocity, turning rate
and actor type, and si =

{
s−TP+1
i , s−TP+2

i , ..., s0i

}
denote the

sequence of discrete states throughout the observed period TP .
Given any agent as the prediction target, we denote it by atar
and the other surrounding agents as Anbrs = {a1,a2, ...,am}
for differentiation. Then we correspondingly denote their state
sequences as star and Snbrs = {s1, s2, ..., sm}. Accordingly,
we have S = {star} ∪ Snbrs and A = {atar} ∪ Anbrs. The
objective of our framework is to predict multimodal future
trajectories Ttar = {Ti|i = 1, 2, ...,K} together with cor-
responding trajectory probability {pi|i = 1, 2, ...,K}, where
Ti denotes a predicted trajectory for target agent atar with
continuous state information up to the prediction horizon TF ,
K is the number of modes. Furthermore, it is required to
guarantee each trajectory Ti ∈ Ttar are feasible with respect
to the existing constrains C, which includes environmental
constrains CM and target’s kinematic constrains Ctar.



Our framework. We tackle the trajectory prediction prob-
lem by introducing a two-stage architecture consisting of
model-based generator G and learning-based evaluator E.
The schematic illustration is shown in Fig. 1. Concretely,
the generator G : (s0tar,M, C) 7→ (P, T ) is tasked to
produce the real-time trajectory space T for the target agent,
which is approximated by a finite number of feasible tra-
jectories. This part starts with searching a set of reachable
paths P = {Pi|i = 1, 2, ..., l} from the map information
given by M, which provides reference paths for trajectory
generation. Then a classical sampling-based planner is utilized
to generate trajectories samples under explicit constraints in
C, and thereby a set of feasible future trajectories T =⋃l

i=1 {Ti,j |j = 1, 2, ..., ni} is produced for the prediction tar-
get, in which Ti,j denotes the j-th feasible trajectory generated
from Pi, and the total number of trajectories n =

∑l
i=1 ni.

In short, G is specialized in trajectory generation with
feasibility guarantee but ignores interaction with surrounding
agents Anbrs. While for the evaluator E : (P, T ,S) 7→
(Ttar, {pi}), it takes charge of modeling implicit multi-agent
interaction and accordingly selects the most probable future
trajectories Ttar from T . Note that the numbers for reachable
paths l, surrounding agents m, and feasible trajectories n are
varying with the real-time state of (M, S). Therefore, we
implement E by training a deep neural network with attention
mechanisms for dealing with dynamic numbers. Notably, the
evaluator E is only tasked to score feasible trajectories in
T without the need for regressing position or displacement
as most learning-based frameworks do. The following two
sections describe G and E in detail.

IV. MODEL-BASED GENERATOR

A. Path Search

Unlike motion planning, where the reference path for the
controllable ego is given, the prediction has no access to the
future paths of uncontrollable targets. Therefore, we conduct
path search Gpath in advance of trajectory generation Gtraj ,
such that each prediction target could be associated with a set
of potential paths P+. Also, the relatively short time horizon
(less than 5 seconds) in prediction makes it practicable to
search all the potential paths for any on-road vehicles.

Our path search algorithm Gpath is partially built upon
the baselines proposed in [1]. Firstly we localize atar on
the map and query its surrounding lane segments as the root
segments. With the lane connectivity information provided
by HD map M, we search the segment sequences along
the predecessors and successors of each root via Depth-First-
Search on M, up to forward distance DF and backward
distance DB . Following, we concatenate each pair of forward
and backward segment sequences and remove redundant ones
with heuristics, and finally, the centerline coordinates of each
segment sequence yield a potential path Pi ∈ P+. In the
phase of path search Gpath : (M, s0tar) 7→ P+, we expect
the resulted path set P+ to provide sufficient coverage to the
future path space of atar, but not impose dynamic constraints.
So for target atar with current state s0tar, some paths in P+

path 
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Fig. 3. Trajectory generation in a Frenét Frame

may not be reachable at frame t = TF . For instance, a high-
speed vehicle cannot change to the opposite lane with a U-turn
in few seconds. Such unreachable paths could be recognized
in the following trajectory generation part as no trajectories
samples towards them are feasible. Then only the reachable
paths would be reserved in P ⊆ P+.

B. Trajectory Generation

Given the potential paths in P+ as dynamic references, we
choose to generate future trajectories in a planning manner.
In the driving domain, motion planning typically stands for
finding an optimal trajectory for SDV to connect the current
state and a goal state, which is essentially different from
predicting multiple probable trajectories for vehicles with
unknown intentions. Despite this, the model-based generator
in planning, which computes a large number of trajectory
samples for the follow-up selection, could also be exploited
for the prediction.

To this end, we adopt the trajectory generation phase
of Frenét planner [40] by Werling et al., which generates
traffic-adapted trajectories in a Frenét Frame with fulfilling
restrictions. The process of our trajectory generator Gtraj :
(P+, s0tar, C) 7→ T is illustrated in Fig. 3. Given a refernece
path in P+, a dynamic curvilinear frame is given by the
tangential vector ~tr and normal vector ~nr at a certain point
r on the path centerline. The Cartesian coordinate ~x = (x, y)
could be converted to the Frenét coordinate (s, d) with the
relation

~x(s(t), d(t)) = ~r(s(t)) + d(t)~nr(s(t)), (1)

in which ~r represents a vector pointing from the path root,
s and d denote the covered arc length and the perpendicular
offset. The trajectory generation begins with projecting the
current state s0tar onto the Frenét frame and obtains the state
tuple [s0, ṡ0, s̈0, d0, ḋ0, d̈0]. The longitudinal movement s(t)
and lateral movement d(t) within the prediction horizon TF
are then generated independently by connecting the fixed start
state tuple with different end state tuples using polynomial
curves to cover different driving maneuvers.

Compared with planning for a controllable agent, predic-
tion receives less accurate state estimation for uncontrollable
targets, and it does not need fine-grained trajectories. In our
trajectory generation phase, therefore, some high-order state



variants are simplified to zero, including s̈(0), d̈(0) of the start
state and s̈(TF ), d̈(TF ), ḋ(TF ) of the end states. For longi-
tudinal movement, we sample the target velocity ṡ(TF )← ṡi
in the range of [max(0, ṡ0−δ−TF ),min(ˆ̇s, ṡ0 +δ+TF )] while
leave s(TF ) unconstrained. The constants δ−, δ+ and ˆ̇s are
given by considering the actor type of atar and speed limit
in M, to control the sampled longitudinal velocity in a rea-
sonable range. Each longitudinal trajectory si(t) is calculated
using a quartic polynomial

s.t. [s(0), ṡ(0), s̈(0)] = [s0, ṡ0, 0]

[ṡ(TF ), s̈(TF )] = [ṡi, 0].

For lateral movement, we sample the target offset d(TF )← dj
in the range of [−dlane/2, dlane/2], with dlane denoting the
lane width. Each lateral trajectory dj(t) is calculated using a
quintic polynomial

s.t. [d(0), ḋ(0), d̈(0)] = [d0, ḋ0, 0]

[d(TF ), ḋ(TF ), d̈(TF )] = [dj , 0, 0].

With the resulted longitudinal and lateral trajectory set Tlon
and Tlat, a full trajectory ~x(s(t), d(t)) is formed by every
combinations in Tlon × Tlat. Here we impose the given con-
straints C to filter out infeasible trajectories. The first step is to
project the Frenét coordinates (s, d) back to global coordinates
(x, y), to check if the trajectory collides with static obstacles
given in CM. For any collision-free trajectory, its high-order
state variables are then converted with the Frenét-Cartesian-
transfomation

[s, ṡ, s̈, d, ḋ, d̈] 7−→ [~x, v, κ, α] (2)

to check if its velocity v, acceleration α and curvature κ
throughout the whole trajectory exceeds the kinematic con-
straints given in Ctar. Here we refer interested readers to [40]
for the detailed derivation of (2), and by this way, we ensure
that each trajectory is kinematically feasible for the real-time
state of a prediction target.

Finally, a bundle of trajectories {Ti,j |j = 1, 2, ..., ni} com-
pliant with environmental and kinematic constraints is gener-
ated from each reference path Pi ∈ P , and all the feasible tra-
jectories together form an overall trajectory space T . Although
the constraints are set to be relatively conservative with leaving
enough margin to the learning-based evaluator, our model-
based generator effectively narrows down the trajectory space
T by explicitly imposing constraints. This advantage would
set our framework more stable in complex scenarios than the
other data-driven frameworks.

V. LEARNING-BASED EVALUATOR

With the model-based generator G providing feasible trajec-
tories in the first stage, the learning-based evaluator E is tasked
to capture implicit agent-map interactions and select probable
future trajectories as prediction results. In this section, we
introduce a novel prediction evaluation network featured with
a dual representation for spatial information. Our network
aggregates information from scene context, including observed

state sequences S, a path set P , and a future trajectory set T .
The overall framework is illustrated in Fig. 2.

A. State Representation

To make our network compatible with most existing tra-
jectory prediction datasets, the state sequences si are reduced
to history tracks in this section. Then before feeding to the
network, each history track si and future trajectory Ti is
discretized to a location sequence with time interval ∆T , and
each reference path Pi is discretized as a waypoint sequence
with distance interval ∆D. Since the longitudinal movement
and lateral offset in (s, d) indicate how the agent moves
relative to a reference path, it provides an understanding of
the local spatial relationship in a more explicit way. For this
reason, in addition to the commonly used Cartesian coordi-
nates (x, y), we proposed to add the Frenét coordinates (s, d)
to form a dual spatial representation for trajectory information.
Here, the full information (x, y, s, d) of each future trajectory
in T is given by the generator, while the (s, d) coordinates
of each history track in S are obtained by projecting (x, y)
coordinates on different reference paths. Additionally, we
adopt the method from [22] to add a dimension of binary
masks in the history track’s representation (x, y, s, d, b) to
indicate if the location at each timestamp is padded or not.

B. Encoding Scene Context

Prior to capture interrelationships between traffic entities,
we first encode each kind of entity in the scene with a track
encoder, a future encoder, and a path encoder. All encoders
are structured with a temporal convolutional (1D Conv) layer
followed by a long short-term memory (LSTM) layer. The
track encoder and the future encoder employ a unidirectional
LSTM and make the last hidden state h(·) as the motion
encoding for history track and future trajectory, while the
path encoder uses a bidirectional LSTM and provides the
sequence of hidden states H(·) as the path spatial encoding.
Given the scene context description (S,P, T ), each reachable
path Pi ∈ P is encoded as a H(Pi), where i = 1, 2, ..., l.
Considering that the Frenét representation is dependent with
the path frame, we encode all history tracks with respect
to each reference path Pi, which results in l groups of
track encodings {h(star), h(s1), ..., h(sm)}i. As the Frenét
representation of each future trajectory Ti,j ∈ T is relative
to the corresponding path Pi, so all future trajectories are
encoded accordingly to form l groups of future encodings
{h(Ti,j)|j = 1, 2, ..., ni}.

C. Modelling Interactions

Next, we propose several submodules to capture the implicit
interactions existing in the scene context, which covers inter-
relationships between static environment and dynamic agents
and interrelationships between multiple dynamic agents. We
exploit the attention mechanism from [38] to fuse the spatial
and temporal information from dynamic numbers of entities
and then construct four modules using the most basic scaled
dot-product attention, namely, path to tracks (P2T), path to



futures (P2F), agent to agent (A2A), and future to future (F2F).
They are implemented in the same way, with linear layers for
key mapping, query mapping, and value mapping. The overall
workflow is shown in Fig. 2. In the upper branch, P2T brings
the spatial information of each path encoding Pi into the
corresponding track encodings {h(star), h(s1), ..., h(sm)}i,
and then the track encodings are further processed by a self-
attention structure in A2A, aiming to capture the interac-
tions between agents in the past time domain. The lower
branch lays emphasis on updating the features contained
in future encodings. P2F brings the spatial information of
path encoding H(Pi) into the corresponding future encodings
{h(Ti,j)|j = 1, 2, ..., ni}. It is followed by F2F that fuses all
future encodings

⋃l
i=1 {h(Ti,j)|j = 1, 2, ..., ni} from different

paths Pi(i = 1, 2, ..., l) using self-attention. In particular,
F2F obtains a global understanding of the reachable space
given by P and, by this way, attempts to further perceive
the differences between different trajectories provided by T .
For any future trajectories Ti,j ∈ T , the corresponding track
tensor Xi(star), interaction tensor Yi(star) and future tensor
Z(Ti,j) could be obtained from P2T, A2A and F2F modules,
which are then concatenated together to form a full description
Ui,j = Concat((Xi(star),Yi(star),Z(Ti,j)).

D. Trajectory Scoring and Learning

With obtaining Ui,j to describe the full information for a
future Ti,j , we score all the feasible trajectories T using a
maximum entropy model:

γ(Ti,j) =
exp(f(Ui,j))∑l

i=1

∑ni

j=1 exp(f(Ui,j))
, (3)

in which f(·) is implemented using a 3-layer MLP at the end
of the whole evaluation network E. The score label for each
trajectory ψ(Ti,j) is resulted from calculating the accumulated
squared distance error Dist(·) between future trajectory Ti,j
and ground truth trajectory TGT in prediction horizon TF :

ψ(Ti,j) =
exp(−Dist(Ti,j ,TGT )/τ)∑l

i=1

∑ni

j=1 exp(−Dist(Ti,j ,TGT )/τ)
, (4)

where τ is set as a temperature factor. Finally, the overall net-
work is trained by cross entropy between the evaluated scores
and the labeled scores L = CrossEntropy(γ(Ti,j), ψ(Ti,j)).

E. Trajectory Selection

For the inference stage that requires a set of K trajectories
as prediction results, we adopt the trajectory selection method
from [41] to remove near-duplicate trajectories, which is
derived from the non-maximum suppression (NMS) algorithm
commonly used for object detection. According to predicted
scores, this method greedily picks trajectories from T while
excludes the lower scored trajectory between very close ones
based on the distance metric Dist(·). Finally, K trajecto-
ries sorted in descending order of scores form the predic-
tion results Ttar = {Ti|i = 1, 2, ...,K}, and the prediction
probability pi is derived by the corresponding scores, i.e.,
pi = γ(Ti)/

∑K
i=1 γ(Ti).

VI. EXPERIMENTS

We evaluate our framework on the Argoverse motion fore-
casting benchmark [7], which provides a publicly available
large-scale dataset for complex urban driving scenarios. In the
following, we conduct extensive experiments, which covers: 1)
comparing our approach against the state-of-the-art methods
on the Argoverse test set; 2) ablation studies on some key
components of our model; 3) verifying the feasibility of
predicted trajectories; 4) evaluating the prediction robustness
under imperfect observations. Lastly, some qualitative results
and comparisons are demonstrated. We begin this section with
an introduction to the experimental setup.

A. Experimental Setup
Dataset. Argoverse motion forecasting dataset [7] contains
over 324K data sequence collected in traffic scenarios from
Pittsburgh and Miami, which is split into 205942 sequences for
training, 39472 sequences for validation, and 78143 sequences
for testing. The training, validation, and test sets are taken from
disjoint parts of the cities such that there is no geographical
overlap. Each sequence lasts for 5 seconds, containing the
centroid locations of each tracked object sampled at 10Hz,
in which one tracked vehicle that follows relatively complex
trajectories (such as changing lanes, navigating intersections,
and turning) is marked as the prediction target. The objective is
to predict a target vehicle’s locations 3 seconds into the future,
given an initial 2-second observation. The last 3 seconds of the
test set are held out, so the model performance on that could
only be assessed on the Argoverse official server. In addition
to vehicle trajectories, the dataset provides an interface for
accessing static map information, including lane centerlines
and their connectivity.
Metrics. We follow the evaluation criteria of the Argoverse
benchmark, which use the following metrics with prediction
number K = 1 and K = 6:
• Miss Rate (MRK): The ratio of scenarios that none of
K predicted trajectories are within 2.0 meters of ground-
truth according to endpoint error.

• Minimum Final Displacement Error (minFDEK): The
L2 distance between the endpoint of the best predicted
trajectory and the ground-truth.

• Minimum Average Displacement Error (minADEK): The
average L2 distance between the best predicted trajectory
and the ground-truth.

Here the endpoint denotes the predicted position at the last
timestamp. Note that the Argoverse benchmark defines best
the same in calculating minADE and minFDE, as the predicted
trajectory with the minimum endpoint error. Additionally, we
also add the probability-based metrics p-minFDEK and p-
minADEK for multimodal predictions (K = 6). They are
calculated by adding (−log(p)) with p-minFDEK and p-
minADEK respectively, where p corresponds to the probability
of the best predicted trajectory. The critical metric used for
ranking the official leaderboard is MR6, which reflects if a
prediction model produces accurate multimodal predictions
consistently in diverse challenging scenarios.



Method
K=1 K=6

Infeasibility (%)
minADE minFDE MR (%) minADE minFDE p-minADE p-minFDE MR (%)

Argo-CV 3.53 7.89 83.48 3.39 7.57 5.18 9.36 81.68 0.00
Argo-LSTM+map 2.96 6.81 81.22 2.34 5.44 4.14 7.23 69.16 43.53
Argo-NN+map 3.65 8.12 83.55 2.08 4.03 3.87 5.82 58.21 86.39

LaneGCN [22] 1.71 3.78 59.05 0.87 1.36 2.66 3.16 16.34 16.52
Alibaba-ADLab 1.97 4.35 63.76 0.92 1.48 2.67 3.23 15.86 –
TNT [41] 1.78 3.91 59.72 0.94 1.54 2.73 3.33 13.28 –
Jean [25] 1.74 4.24 68.56 1.00 1.42 2.79 3.21 13.08 –
Poly (3rd) 1.70 3.82 58.80 0.87 1.47 2.67 3.26 12.02 –
S. Thomas-Huawei (2nd) 1.77 3.84 59.54 0.97 1.54 2.56 3.12 11.90 –
Ours-PRIME (1st) 1.91 3.82 58.67 1.22 1.56 2.71 3.05 11.50 0.00

TABLE I
COMPARISON WITH ARGOVERSE BASELINES AND TOP-RANKED ENTRIES ON THE ARGOVERSE MOTION FORECASTING LEADERBOARD.

ALL METRICS ARE LOWER THE BETTER AND MISS RATE (MR, K=6) IS THE OFFICIAL RANKING METRIC.

Implementation Details. The implementation of our model-
based generator and learning-based evaluator are detailed in
the appendix (Sec. VIII). As for the state-of-the-art methods
to be compared, only LaneGCN [22] is open-source. We
use its official implementation and Argoverse baselines [7]
for additional tests about trajectory feasibility and imperfect
tracking.

B. Comparison with State of the Art

We compare our framework against the Argoverse official
baselines [7] (CV, LSTM+map, NN+map), and top-ranked
entries from the Argoverse leaderboard, including the re-
cently published state-of-the-art methods: LaneGCN [22] from
UberATG, and TNT [41] from Waymo & Google; the top-3
methods in Argoverse Motion Forecasting Competition 2020:
Jean [25], Poly, and Alibaba-ADLab, in which Jean is the Win-
ner of Argoverse 2020; as well as the latest top-3 methods by
the data of 2021-03-01: Our PRIME, S. Thomas from Huawei,
and Poly. The performance comparison under Argoverse test
set is shown in Table I. It could be noted that the Argoverse
Leaderboard is highly competitive with broad interest from
both industrial and academy. For the core metric Miss Rate
(K = 6) used for ranking, the previous leading entries are
fairly close on this metric, which implies the difficulty of
further improving it. Nonetheless, our PRIME outperforms all
other methods by a large margin on MR6 and achieves leading
performance on the other metrics. Notably, our probability-
based metric p-minFDE6 is also the best among all methods,
which would be highly beneficial to weigh between multiple
predictions in making motion plans

Furthermore, from the methods with public details, includ-
ing LaneGCN [22], TNT [41], and Jean [25], we can find
that they all built upon a learning-based paradigm that utilizes
neural networks to model all traffic entities and generate
predictions. Our PRIME takes the 1st place with a novel
framework design that integrates a model-based generator
with a learning-based network. Notably, due to the lack of
more detailed on-road information in the dataset, such as

Modules
K=6

# Params
p-minADE p-minFDE MR (%)

Base 2.33 2.63 8.52 0.69 M
Base + F2F 2.31 2.61 8.23 0.72 M
Base + SD 2.29 2.58 7.81 0.99 M
Base + F2F + SD 2.29 2.57 7.51 1.02 M

TABLE II
ABLATION STUDIES ON THE ARGOVERSE VALIDATION SET.

vehicle types, bounding box, static obstacles, etc., the current
quantitative result is achieved by imposing relatively general
constraints on our model-based generator, indicating there
exists more space to improve when deploying our framework
in a real autonomous driving system. Moreover, handling envi-
ronmental and dynamical constraints in a model-based manner
and generating continuous trajectories with full information is
significant for real-world deployment, which could not be well
reflected from the given metrics.

C. Ablation Studies

We conduct ablation studies on the learning-based evaluator
and report the probabilistic-based metrics (p-minADE, p-
minFDE) and Miss Rate on the Argoverse validation set.
With the P2T, P2A, and A2A attention modules capturing the
basic interactions between map and agents, they form the base
model together with the scene context encoders, while the F2F
module and Frenét representation are respectively ablated from
the full evaluation network to study their impacts.

From the results reported in Table II, we draw the following
conclusions. First, the base model performs with MR6 =
8.52%, at the same level with TNT (MR6 = 9% reported
in [41]), reflecting the basic attention modules are effective
in capturing the agent-map interactions from the scene con-
text encodings. Second, as for the Frenét representation that
provides the local relationship between path and trajectories
and the F2F module that fuses all predictions to get a global



understanding of the reachable space, they both contribute
to performance improvement. By comparison, the inclusion
of Frenét representation is more effective for boosting the
performance. Third, compared with other rasterization-based
models [8, 26] with ResNet backbone (at least 11M param-
eters) and graph-based methods [14, 22], the overall model
(Base + F2F + SD) makes the best performance with only
1.02M parameters, which indicates separating the function
of trajectory generation would greatly simplify the network
structure, and still, a high prediction performance could be
achieved with our framework design.

D. Trajectory Feasibility

As the typical non-holonomic motion system, vehicles are
constrained under inherent kinematic characteristics, while
most prediction models generate unconstrained predictions by
neural networks. So we investigate the ratio of infeasible
trajectories of prediction models. Because the high-order infor-
mation (velocity, acceleration, or turning rate) cannot be accu-
rately estimated from discrete locations produced by common
learning-based prediction models, we only evaluate the tra-
jectory feasibility by curvature. By interpolating the predicted
positions with pairwise cubic splines, we get the curvature
at each point. Then a prediction is defined as infeasible if the
curvature κ > 1/3 (i.e., the minimum turning radius is 3m) for
any of its points. The ratio of infeasible predictions is shown in
the last column of Table II. Except for the physical baseline
Argo-CV (Constant Velocity), the others, as representatives
of unconstrained models, have at least 16.5% predictions
infeasible. Although we only use curvature for judgment and
set the threshold very conservative,2 the infeasible predictions
still take up a considerable proportion, which would cause
redundant burdens for SDVs to make decisions and plans.
By contrast, the model-based generator in our framework can
handle any kinematic and environmental constraints, thereby
ensuring each trajectory prediction is feasible.

E. Imperfect Tracking

While most motion forecasting datasets provide tracking re-
sults of a certain duration for prediction targets, a self-driving
vehicle would inevitably encounter some real-world situations
where the target is lost in some timestamps or not tracked
long enough yet. This requires the prediction model to robustly
handle imperfect tracks rather than being restricted to fixed-
duration tracking inputs. To let the models (ours, LaneGCN,
and NN+map baseline) be aware of imperfect tracks, we re-
trained them by randomly dropping some tracked locations
out. For processing such inputs while keeping original network
structures, the locations of dropped timestamps are padded
using the nearest tracked locations, and a dimension of binary
masks is added to denote if the location is padded or not. Also,
we retain the tracked location of the last timestamp to ensure
the prediction target could be detected at inference time.

We randomly sample the drop rate from 0 ∼ 0.6 for
each data sequence in training but fix it in testing. The drop

2The minimal turning radius for a regular sedan is around 4.5 ∼ 6.0m

Fig. 4. Comparison of prediction robustness under imperfect tracking. We
test how the MR6 varies when the target’s track is dropped at different rates.

rate is pointwise applied, i.e., a track with a 0.6 drop rate
may drop more or less than 60% of locations. From the
results shown in Fig. 4, we observe that our model performs
stably, with only 4% relative increase on MR6, while the
relative increase is around 30% ∼ 40% for the others. The
result indicates that learning-based prediction models rely on
long-term tracked results to regress trajectories, while our
framework design relieves that to a certain extent, thereby
improving the prediction robustness.

F. Qualitative Results

We show our prediction results under diverse traffic sce-
narios in Fig. 5 and provide some representative comparisons
with LaneGCN [22] in Fig. 6.

VII. CONCLUSION

We present a prediction framework PRIME that learns
to predict vehicle trajectories with model-based planning.
PRIME guarantees the trajectory feasibility by exploiting a
model-based generator to produce future trajectories under
explicit constraints. It makes accurate trajectory predictions
by employing a learning-based evaluator to capture implicit
interactions in scene context and select future trajectories
by scoring. Furthermore, the combination of model-based
trajectory generation and learning-based trajectory selection
relieves high dependency on long-term tracking. Our PRIME
outperforms other state-of-the-art prediction models in pre-
diction accuracy, feasibility, robustness and achieves the 1st
place on the highly-competitive Argoverse Leaderboard. More
beyond these performance metrics, our approach reasonably
regularizes the prediction space and produces trajectory predic-
tions with continuous information, which facilitates decision
making and motion planning for self-driving vehicles. More-
over, it is compatible with various on-road information, such
as vehicle types, traffic rules, etc. These advantages would
highly beneficial to deployments in real systems.



Fig. 5. Qualitative results under diverse scenarios on the Argoverse validation set. The HD map is depicted by light grey segments. The other agents’ history
tracks are shown in steel blue. The target agent’s history track is shown in yellow and ground-truth future trajectory in green. The model-based generator
produces the set of future trajectories T (blue) with feasibility guaranteed. The learning-based evaluator selects K trajectories from T as multimodal prediction
results (red), and the depth of red indicates their probability.

Fig. 6. Qualitative comparisons between ours (the upper row) and LaneGCN (the lower row) on the Argoverse validation set, with the same coloring scheme
as in Fig. 5. Here, we use the state-of-the-art method, LaneGCN [22], as a representative for typical prediction models that generate unconstrained trajectories
by neural networks. We show their common failures, including kinematically and environmentally infeasible predictions. Due to kinematic constraints, vehicles
cannot take a turn suddenly at high speed (1st column), or reverse their moving directions (2nd column). Also, the prediction results of turning with across lane
boundaries (3rd column), or heading towards reverse lanes (4th column) are incompliant with environmental constraints. Such infeasible predictions would
cause redundant burdens for an AV to make decisions and motion plans. By contrast, the future trajectory set (blue) produced by our model-based generator
is explicitly regularized by kinematic and environmental constraints, and thereupon, makes accurate and reasonable future predictions (red).



Fig. 7. The top 10 entries on the Argoverse Motion Forecasting Leaderboard (snapshot made on 2021-03-01)

VIII. APPENDIX

A. Model-based Generator

1) State Estimation: : Argoverse provides vehicle state by
discrete centroid positions, and there exists some noise in the
data. We use Kalman Filter to estimate the target vehicle’s
velocity and heading and set its acceleration and turning rate
to zero.

2) Path Search: : We use the Depth-First-Search algorithm
to search potential paths that could be reached for prediction
targets. The forward-searching distance DF and backward-
searching distance DB are set to 140 and 20 meters separately.
Each prediction target in the dataset is associated with 3.04
reachable paths on average.

3) Trajectory Generation: : For longitudinal movement, we
sample the target velocity ṡ(TF ) in the range of [max(0, ṡ0−
δ−TF ),min(ˆ̇s, ṡ0 + δ+TF )] with ˆ̇s = 30m/s, δ− = −6m/s2,
δ+ = 6m/s2 and the number of samples is set to 35. For
lateral movement, we sample the target offset d(TF ) in the
range of [−dlane/2, dlane/2], with the number of samples set
to 9. Because the lane width cannot be queried from locations,
we fix dlane to 5 meters in lateral sampling.

With the generated longitudinal and lateral trajectory sets
Tlon and Tlat, a full trajectory ~x(s(t), d(t)) is formed by
every combinations in Tlon × Tlat. Then we project the
Frenét coordinates (s, d) back to global coordinates (x, y),
to check trajectory’s feasibility with respect to environmental
constraints CM and kinematic constraints Ctar. Here, collision
check is omitted as no static obstacle is given. The detailed

vehicle information cannot be queried from the dataset either,
so we adopt a general urban sedan setting for checking dy-
namic feasibility, with the maximum velocity v = 33.33m/s,
maximum acceleration/deceleration α = ±8m/s2, and curva-
ture κ = 0.33. If more detailed vehicle category information
could be accessed, our future trajectory space could be further
regularized. Consequently, each prediction target in the dataset
obtains 484 feasible trajectories on average.

The runtime of generating a single trajectory by a single
thread is around 0.1 ∼ 0.2 ms, and the generation process
is highly parallelizable. So the model-based generator has a
satisfactory real-time performance.

B. Learning-based Evaluator

For encoding scene context, all the continuous future tra-
jectories Ti are discretized with time interval ∆T = 0.1s, and
all reachable paths Pi are discretized with distance interval
∆D = 2m.

We train the evaluation network with a batch size of 64.
The network is optimized using Adam with the learning rate
initialized as 0.001 and decayed by 10 at every 10 epoch.
We use Group Normalization with a group number of 4 for
normalizing the data and LeakyReLU for non-linearity. We
apply global random scaling with a scale ratio sampled from
0.75 ∼ 1.25 for data augmentation during training.
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